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ABSTRACT

In this paper we model a geometrically thin accretion disk interacting with an externally imposed,
uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying
the magnetic field in the process. Inside the disk the radial component of the field is sheared into a
toroidal component. The aim of this work is to establish the character of the resultant magnetic field
and its dependence on the disk's parameters. We concentrate on a-disks driven by turbulent viscosity.
Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of
the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on
the magnitude of the magnetic Prandtl number, ._. We present two illustrative examples of viscous
disks: a so-called "standard" steady state model of a disk around a compact star (e.g., cataclysmic
variable), and a steady state model of a proto-planetary disk. In both cases, ._' = 1, _ = 10 1, and
,_ = 10-2 scenarios are calculated. Significant bending and magnification of the magnetic field is possible
only for disks characterized by _ of the order of 10 2. In such a case, the field lines are bent sufficiently

to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its
toroidal component. We also investigate the dragging of the magnetic field by a nonviscous proto-
planetary disk described by a phenomenological model. This scenario leads to large distortion and mag-
nification of the magnetic field.

Subject headinys: accretion, accretion disks- MHD

|. INTRODUCTION

Accretion disks are believed to surround many stars.
Some of these disks form around compact stars such as
white dwarfs, neutron stars, or black holes that are
members of binary systems. They reveal themselves as a
power source, especially in the X-ray and gamma regions of
the spectrum. On the other hand, protostellar disks are
believed to be accretion disks associated with young, pre-

main-sequence stars and manifest themselves mostly in
infrared and radio observations. These latter disks are con-
sidered to be a natural outcome of the star formation

process. Furthermore, AGNs are believed to be a manifesta-
tion of disk accretion onto a supermassive black hole.
Regardless of the astronomical context, accretion disk
theory is beset by uncertainty as to the nature of the angular
momentum transport mechanism responsible for the accre-
tion of mass onto the central object. Most of accretion disk
theory hinges on the notion that accretion is achieved by
means of turbulent viscosity. This assumption is based pri-
marily on the very large value of the Reynolds number,
which can be as high as l0 t`* for disks around compact
stars. The actual source of such turbulence is difficult to

pinpoint, however. The most obvious candidate, differential
rotation, has been largely disregarded as a possible source
of turbulence because the Keplerian rotation shear is stable
with respect to linear, infinitesimal perturbations. However,
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it may be unstable with respect to nonlinear, finite am .1
tude perturbations (Dubrulle 1992). Another candidatt
convection driven by a superadiabatic temperature gradi :l_
across the disk, although it is uncertain whether suc],.
gradient can be maintained throughout a signific_l
portion of the disk. Balbus & Hawley (1991) have sho,v
that the presence of a weak magnetic field can shar;31
destabilize a Keplerian disk. The resulting magmi_
rotational instability is currently considered the best car_d_
date for the elusive source of disk turbulence, at leasl i_
highly ionized disks where the ideal MHD assumpti _1
crucial for the existence of such instability, is fulfilled. "Ini
works for small, hot, and thermally ionized disks arot n,

compact objects, but is quite problematic for large prol )_,
tellar disks, which are too cool to be thermally ionized.

Problems with turbulent viscosity have motiva e
research on alternative means of accretion. In particu a
attention has been focused on the effect of an MHD w_n

emanating directly from a disk. Blanford & Payne (19.g:
were the first to argue that such a wind can be so efficien i:
removing angular momentum as to render turbulent ",i,,
cosity unnecessary inasmuch as the existence of an act rc
tion process is concerned. Pelletier & Pudritz (1992) shove
that the ratio of the wind torque to the viscous torque o
fluid element of a disk located at a radius R is given b
(BE/4nP)(RA/CtH). (The list of all symbols used in this pa _c
is given in Table l). Typically R_/R = 3-5 and, for g _
metrically thin disks, wind torque can indeed be domim n_
The hypothesis of wind as an accretion agent gained _rt
dence as it became clear from observations that bip( i:_
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TABLE 1

SUMMARY OF NOTATION USED IN THE PAPER

Symbol Description

R,_,Z .........................
t_,_,2 ........................
B = (B a, B_, Bz) ..............

B_ ..............................

A = (0, A,, 0) ................
d d, A_ .........................
[],. []ou,. ....................
17 ................................

qr, rh, r/= q, + r/t .............

Rin, Rout .......................

R o ..............................

R A ..............................

f_, _K ..........................
t ................................

tdi. = H2/q, tK = 2n/f_K......
M,N/ ..........................
_t ................................

v ................................

= _,/v .......................
v=(v_, v,, Vz)...............
H ...............................

T,p,P,Y ......................

Cs ..............................

i ................................

r = R/R o, z = Z/H(R) ........

x = log (R/RJ ................

Cylindrical polar coordinates
Unit vectors in principal directions
Magnetic field
The value of Ba at the surface of the disk
Vector potential of a poloidal field
Vector potential due to currents in a disk and at infinity
Superscripts "in" and "out" mean inside and outside a disk
Electric conductivity
Resistive, turbulent, and total magnetic diffusivities
Inner and outer radii of a disk
Arbitrary unit of length
Alfvrn radius of flow beginning from the disk at R
Angular velocity, Keplerian angular velocity
Time
Diffusion time, Kepler time
Mass of the central star, an accretion rate
Dimensionless turbulent viscosity
Turbulent viscosity
Magnetic Prandtl number
Velocity field
Disk's half-thickness
Temperature, density, pressure, surface density at the midplane
Speed of sound
Angle between a field line and the normal to the disk
Dimensionless spatial variables
Logarithmically spaced radial variable

outflows (winds or phenomena believed to be driven by
winds) are commonly associated with young stellar objects,

AGNs, X-ray binaries, and perhaps cataclysmic variables
(see review by Pringle 1993).

For a wind to be effective in removing angular momen-
tum from the disk, it must be magnetized. The magnetic
field must have a global character and a proper geometry,

with open field lines that should make a sufficiently large
angle, i, with the normal to the disk. According to Blanford
& Payne (1982), assuming cold disk plasma, i> 30 ° is
required. Are accretion disks magnetized and, if so, is the
geometry needed for centrifugally driven winds to occur
feasible? Although presently there is no direct observational
evidence for magnetic fields in accretion disks (however, see
Horne 1994), we expect disks to be magnetized. Scenarios
proposed for magnetization of accretion disks can be
broadly divided into two distinct categories: internally gen-
erated field and externally maintained field. An internally
generated field results from a self-excited dynamo process
that builds up a magnetic field from an arbitrarily small
seed field. This can be achieved by either a turbulent

dynamo (Pudritz 1981 ; Stepinski & Levy 1991) or a process
involving a magnetorotational instability (Tout & Pringle
1992). In general, conditions in most accretion disks are
favorable for internal generation. Although the major theo-
retical attraction of self-excited processes is their indepen-
dence from any external magnetic field, they will amplify
such a field if present. For example, Curry, Pudritz, &
Sutherland (1994) showed that a global magnetorotational

instability acting in an accretion disk permeated by an
external magnetic field could amplify the field and may
modify its large-scale structure. If we ignore the effects of
self-generating processes then an externally maintained field
results from dragging inward an externally imposed field. In
such a scenario the source of magnetic field amplification is
the radial velocity. This mechanism has received a lot of

attention in connection with wind phenomena because the
resultant structure of the magnetic field (dipole-like sym-
metry, open field lines) seems to be favorable for launching
centrifugally driven winds. Conversely, internally generated
fields are expected to have quadrupole-like symmetry with
closed field lines (see Stepinski & Levy 1991), a configu-
ration that does not favor the initiation of wind.

In the present work, we investigate the configuration of
the magnetic field in and around the disk resulting from
dragging an initially uniform externally maintained field by
a prescribed accretion flow. We stress that the prolonged
existence of such a field is possible only if accompanied by
the concomitant existence of a magnetic field at "infinity."
If the currents supporting the magnetic field at infinity
dwindle, so does the magnetic field in a disk. The astrono-
mical context of an external field is not immediately clear,
with the possible exception of young stellar objects where
an external field can be identified with the magnetic field
permeating the remnant molecular cloud. Our motivation is
to establish under what conditions, if at all, the dragging of
an external field will distort field lines to such an extent as

to allow centrifugally driven winds to develop. Our calcu-
lations are not self-consistent; we consider the structure of
the disk to be given and not affected by the magnetic field.
There is no wind present in our approach, so accretion is
realized by either turbulent viscosity or, in one particular
example, by unspecified means. Thus, our calculations are
aimed at studying the onset of winds, rather than a hypo-
thetical disk driven by a fully developed wind.

Because the ability of the accretion flow to bend field
lines is so critical for the viability of centrifugally driven

winds, the problem we embark on solving has been con-
sidered before, although not in the most direct and general
fashion. Calculations carried out by van Ballegooijen (! 989)
addressed the problem of axisymmetric magnetic field
amplification by accretion flow in the context of cataclysmic
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variables.His modellackedanyexternallyimposedfield,
probablybecausethesourceofsuchafieldisnotapparent
inclosebinaries,althougheitherof thetwostarsconstitut-
ingthesystemcanbeapotentialsourceofanexternalfield,
a possibilityexplicitlydiscardedby van Ballegooijen.
Withoutanexternalfieldhefoundthata magneticfield
anchoredin thediskdecays,anexpectedresultin lightofa
generaltheoremprovenbyCowling(1934)whohadshown
thatanaxisymmetricmagneticfieldcannotbesustainedby
themotionof thefluid occurringin a bounded volume.
Recently, Lubow, Papaloizou, & Pringle (1994a) revisited
the van Ballegooijen problem, but with the addition of an
externally generated field. In this case Cowling's theorem
does not apply as there exist currents at infinity that main-
tain an external field, so the problem is, strictly speaking,
defined in an unbounded volume. They found that indeed
the magnetic field is sustained and a steady state configu-
ration of the magnetic field is reached. Furthermore, they
established that the character of a so-engendered magnetic
field depends upon a single, dimensionless parameter _. =

2_//(3H [ V_ I). The all-important value of the angle i relates
to _ by the relationship tan i= 1.529-1. Lubow et al.
proffer these results as general enough to be applicable to a
comprehensive model of disk evolution, one in which a cen-
trifugally driven wind is responsible for the accretion flow,
and the flow, in turn, bends the magnetic field enabling the
wind. However, the method of solution employed by
Lubow et al. is quite simplified, and it is not clear whether
their solution capture the essential feature of the problem.
Following von Ballegooijen, they consider what is, in effect,
a one-dimensional problem inasmuch as they vertically
average the hydromagnetic equation inside the disk. As a
result, the structure of the magnetic field inside the disk has
to be assumed instead of calculated. The discussion of their

solutions is docile by virtue of being dependent upon a
single parameter 9. This, however, is an artifact of not only
one-dimensionality, but also of a particularity of their disk
model, which assumes that the disk half-thickness, H,
depends linearly on the distance from the star, R, and that
magnetic diffusivity is uniform throughout the disk.
Although such assumptions are quite sensible for accretion

disks around compact stars, they are inadequate for other
classes of accretion disks. In particular, physical conditions
describing the state of accretion disks around young, pre-
main-sequence stars are incompatible with Lubow et al.
model. Considering the importance of this problem for the
viability of centrifugally driven winds, and its ramifications
for accretion disk theory, we decided to take a more general
approach to the problem of magnetic field dragging in acc-
retion disks.

Our adopted approach is based on the following assump-
tions: (1) the axisymmetric solution of the full hydro-
magnetic equation in the entire unbounded space; (2) the
existence of an external field maintained by currents located
at infinity; (3) a kinematic approach in which all properties
of the disk are given a priori and remain unchanged; (4) a
vacuum exists outside the disk ([ Z[ > H); (5) inside the disk
all quantities, except the calculated magnetic field, are verti-
cally uniform, (6) magnetic fields are not amplified by either
a turbulent dynamo or the magnetorotational instability;
and (7) magnetic losses are dominated by turbulent and
resistive (ohmic) dissipation. Note that the first assumption
aims at obtaining the solution outside and inside the disk
concurrently, and the third assumption implies that any

steady state model of an accretion disk can be consid, r,
using our approach. The assumption of a vacuum out _i,,
the disk is made reluctantly for the sole purpose of sin p
city. We do not expect that the space outside the dis:_
indeed a vacuum; instead we expect that the motion of :l_
diluted matter there is controlled by the magnetic fiel t
contrast to the inside of the disk where the behavior ot ti

magnetic field is ruled by the motion of the gas. In o h,
words, we expect the magnetic field outside the disk tc i
almost force-free. As finding a general configuration , f

force-free magnetic field is beyond the scope of this pa_x
we assume the simplest force-free pattern given t
V x B = 0, which also happens to define a magnetic fiel t
vacuum. The assumptions about ignoring the .e_
generating processes follows from our desire to isolate tt
consequences of field dragging. The last assumption el.m
nates from our considerations cold disks with such o

density that magnetic losses are primarily due to ambip, 1,
diffusion. Such conditions may exist in very extended tsc _l_
of hundreds of AU) parts of disks around young stars, ,i,
bending of magnetic fields under these circumstances _:_
considered by K6nigl (1989) and Wardle & K 6nigl (1993:

Our method of finding the magnetic field configuratio:_
described in § 2. The next three sections are devoted

particular disk models. In § 3 we apply our method to _l-
so-called "standard" model for thin accretion disks aro_ m

compact stars, and in § 4 we employ our method fe;
fiducial model of a proto-planetary disk. These are b _!
viscous disks, and we have found that viscous disks :a

significantly bend magnetic field lines only under s(a_
questionable physical assumptions. Thus, in § 5 we consi.tc
a phenomenoiogical model of a proto-planetary disk th_ t
characterized by a swift inward flow and is, theref_,r_
capable of significantly bending field lines. Finally, in § 6
summarize our findings and discuss some implication_,
our results.

2. EQUATIONS OF THE MODEL

We consider the interaction of an inward flow of mate i_

inside a disk with an externally imposed magnetic field. "i'h
notation used throughout the paper is summarized in Ta _1
1. Cylindrical polar coordinates are used, with Z = 0 co_ re
sponding to the disk midplane and R = 0 correspondin_ t
the center of the star. In the nonrelativistic case the Max_ e.

equations complemented by Ohm's law give the hyd:c
magnetic (induction) equation that determines the beha_ io
of a magnetic field.

08

0-_ =Vx(VxS)-vx(_v×8)" _;l

Because the system is axisymmetric, we can express h

magnetic field in the form 8 = B, q_+ V x A o q_. The te r=
B, represents the toroidal field and the term V x A, _ r_ p
resents a poloidal field with components BR = --8A¢,/_;,
and B z = (1/R)O/OR(RA4,). Under such an assumpti _r:
induction equation (1) is reduced to a set of two sca a
equations:

at EaRl az ]+ q R OR (RB4')

+ q 8Z 2 OR
2
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and

_ (RA,) +
0t = ,9-RROR 0Z 2

VR0
R OR (RA,). (3)

Several terms have been omitted in deriving equations (2)

and (3) from the general form of induction equation (1).
First, we neglect the vertical component of the velocity field
because in geometrically thin disks, to which we want to
apply our calculations, Vz <_ VR <_ V,. However, we keep the
radial component of the velocity field, as it is the only
source of magnetic field amplification in our model. Second,
we neglect a term in equation (2) proportional to Oq/OR
because in a thin disk this term is small in comparison with

terms proportional to the magnetic diffusivity itself. Note
that equation (3), governing the evolution of the poloidal
field, is completely decoupled from equation (2), governing
the behavior of the toroidal field. This is a consequence of

the kinematic approximation and the omission of any self-

generation mechanisms such as a turbulent dynamo. There-
fore, we can first solve for the poloidal field (eq. [3]) and
later find the toroidal field (eq. [2]) using the previously
obtained solution for the poloidal field. Note, that in such

an approach, the poloidal field structure is not affected by
the toroidal field.

Equations (2) and (3), describing the evolution of a mag-
netic field inside a disk, must be supplemented by equations

ruling the behavior of a magnetic field outside a disk, which
are easily obtainable under our assumption of a vacuum
exterior. The toroidal magnetic field outside a disk must
vanish because of assumed axisymmetry. As a vacuum is

current free, the pqloidal field satisfies Ampere's law,
V × B = V × V × Atp = 0, which has an explicit form

0 [1 0 ] 02A¢= 0 (4)O---R -R-_ (RA,) + OZ 2 .

The magnetic field must be continuous at the disk surfaces,
imposing certain boundary conditions for Ai,"(+_H) and

A_Ut(+ H). At infinity the field must be identical to the exter-
nal magnetic field. Our models of accretion disks have finite
radial extent, limited by an inner radius, Ri_, and an outer
radius, Ro_ t. We assume that the vector potential at both
radial boundaries is equal to the vector potential of the
external field. Finally, we force our solution to have a dipole

symmetry by requiring that the radial component of the
magnetic field vanish at the disk midplane. The summary of
all boundary conditions is given in Table 2.

TABLE 2

SUMMARY OF MAGNETIC F1ELD BOUNDARY CONDITIONS

Location A, A S B,

Infinity .......................

R = Ri. and R = Rout ......

disk surface, Z = + H ......

disk midplane, Z = 0 ......

ou,_ _ AS'°ut=0A, - A_ ...
A_ n = A_ AS 'in = 0 B, = 0

out _ oo d,out
A_ - A,_ A, = 0

Ai¢" = A_"' AS, in = AS .... B¢ = 0

_AtCn _A;Ut OAS.in _A S ....

dZ OZ c_Z _Z

0A_" ¢3Ad'in
--=0 ---L--* =0 B,=O
oz oz
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The dependence of the poloidal field on an externally
imposed magnetic field is implicit in equation (3), as it enters
through boundary conditions. It is desirable, both for com-
putational reasons and for greater clarity, to have the
driving equation explicitly dependent on the external field.
This may be achieved by splitting the magnetic potential
into a contribution from currents within a disk, A_, and the
potential from currents located at infinity, A_, so

A, = A_ + Ag. (5)

We now assume that the externally imposed magnetic field
is uniform and directed along 2, B _ = (0, 0, B°°), with B _

uniform and given. The magnetic potential of such a field is
A_ = B*R/2. Substituting representation (5) into equations
(3) and (4) we obtain

d'" [ 01 _ ]= r/ (RA$ "i")
Ot OR R OR

02A_ "_" VR O (RA$._,)_ VRB_ (6)
+ q OZ 2 R OR

inside the disk, and

R _ (RA$ "°_t) + 0Z 2

outside the disk. Equations (6) and (7) are supplemented by
the boundary conditions given in the third column of Table
2. Terms on the right-hand side of equation (6) represent
radial diffusion of the poloidal field, the diffusive drift of the
poloidai field out of the disk (vertical diffusion), advection of
the poloidal field with the accretion flow, and the source
associated with the external field, respectively. As the mag-
netic field inside the disk evolves, so does the field outside

the disk; even so, there is no explicit time dependence

present in equation (7). The time dependence enters into the
solution of equation (7) through boundary conditions at
disk surfaces. The solution of equations (6) and (7), subject
to the boundary conditions shown in Table 2, constitute the

principal problem of this paper.
Let us once again enumerate the steps we perform to find

the total structure of a magnetic field resulting from drag-

ging of an external field. First we solve the system of equa-
tions (6) and (7) to find AS inside and outside the disk. We
add the result to Aft, thereby obtaining the total potential
of the poloidal magnetic field, A¢. Components of the poloi-
dal field, BR and B z, are now obtainable from the formulas
given just above the equation (2), whereas the poloidal field
lines are calculated from the relation RA_, = constant.
Finally, the toroidal field, B_, is calculated from equation
(2), subject to the boundary conditions given in the last
column of Table 2. This concludes the description of the

approach we have taken to calculate the outcome of mag-
netic field dragging in accretion disks. The remainder of this
section recounts certain technical details of our approach

and its numerical implementation.
Because we want to reckon with steady state models of

thin accretion disks that otherwise are quite general, we
need to transform our equations so they can be defined on a
rectangular spatial domain. Let us introduce new spatial
coordinates, r = R/Ro and z = Z/H(R). Thus, we would
measure radial distance in some arbitrary unit R o (not neces-

sarily equal to either R_, or Rout), and vertical distance in
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unitsof thelocal half-thickness of the disk. The transform-

ation (R, Z) --*(r, z) brings equation (6) into the following
form:

_t =R--_ &r ¢?-r

rI c?ZAg'i" VR 1 0 (rAg.i,) - V, B_. (8)
+ H 2 Oz 2 R o r Or

Now equation (8) is defined on a rectangular domain r
(R_,/R o, Ro,JRo), z E (0, 1). The domain of a vertical coor-

dinate starts at the midplane (z = 0) because, due to
assumed dipole symmetry, it is sufficient to consider only
the space above the midplane. Note, however, that the
transformation r = R/R o and z = Z/H(R) leaves equation
(7) still in the unbounded domain as Z _ (H, oc) transforms
into z e (1, w,J). Therefore, such a transformation is inap-
propriate for the space outside the disk. However, a differ-
ent transformation r = R/R o and z = H(R)/Z happens to
map the outside of the disk into the same rectangle on
which equation (8) is defined. The new form of equation (7)
is

_ ] t32A_'°ut0 1 L .out) H 2 ,. [_Z2

OA_.ou'
R°2 z 3-=0. (9)+2H -7 0z

Both equations (8) and (9) are defined on the same finite,
rectangular spatial domain, and are coupled by means of
boundary conditions at z = _+ I. The total set of boundary
conditions for the redefined problem (8) and (9) is almost
identical to those listed in the third column of Table 2 if R

and Z are replaced by r and z. The only difference is the
second condition at the surface of the disk (z = _+1), which

now reads c_A_'i"/_z = -?A_'°"'/(_z. Finally, to have a better
resolution in the radial direction, we change r to a logarith-
mical spaced variable x according to r = (Ri,/Ro)lO x. As
this changes only a radial variable, the form of boundary
conditions is unaffected by such a transformation.

Two different numerical methods are employed to solve
the set of equations (8) and (9). The physics of the problem
hints at the existence of a steady state solution when the
amplification of the field by inward dragging is balanced by
magnetic diffusion. Thus, our first numerical method is
based on an assumed steady state. We put the time deriv-
ative to zero and discretize the spatial domain with an even
spacing mesh in both coordinates x and z. The resulting set
of finite differences equations constitutes a set of linear alge-

braic equations, which is solved using the Gauss elimi-
nation method. We use this method for the bulk of our

calculations. However, to obtain information about the
time necessary to achieve such a steady state, a second
method, utilizing time-dependent calculations, is used. We
discretize our equations using finite differences, first-order
in time and second-order in space. Inside the disk we solve
the resultant set of finite differences equations by the Euler
method. The equation describing the magnetic potential
outside the disk is solved with a simple relaxation scheme.
After the inside equation is advanced one time step, we
iterate the outside equation until the boundary conditions

at the disk surface are met. Both methods eventually ):e
the same solution.

3. MAGNETIC FIELD DRAGGING IN THE STANDARI

ACCRETION DISK MODEL

In this section we examine the magnetic field generate i
a result of dragging an external field by matter in our
called standard accretion disk with parameters that rou_ h
correspond to those in cataclysmic variables. N)I
however, that because this work is geared toward un k
standing the basic features of magnetic field draggin:
accretion disks, our choice of disk model is dictated b?,
simplicity rather than by how well it describes the phc_
mena of cataclysmic variables. The steady state modei
such a disk was first investigated by Shakura & Sun 3
(1973), and it is based on the c_prescription of viscosity. V,
assume a disk surrounding a compact nonmagnetic .t
with mass M = 1 M o and a radius of about 109 cm. |'t
disk extends from about the star surface (R_, = 10 9 CFE}
Rou t = 10 t2 cm. The typical temperatures are from 10
near the inner radius to 10 3 K near the outer radius. T_,t

thermal ionization is high and resistive diffusivity, of _I
order of 104-107 cm 2 s- 1, is negligible in comparison to tt
turbulent magnetic diffusivity, which is of the order of 1( _:
10 _4 cm 2 s - 1. A characteristic magnetic field diffusion ti _
td_. _ H2/q, is of the order of 102-104 s, so for a mag_:t
field to persist it must be either internally generated ,
amplified from an externally supplied source. The phys c
quantities in the standard model are described by (see, ._
Frank, King, & Raine 1985)

H = 1.7 × 108_ -l/108"ar3/20A'_-3/Sog/8
Jr* 16 ***t "'10 cm, 1

1 t_4,,,4/5 A_I,3tl 0 a/t - 1/4R _-01/4 1V_= -2.7x ...... 16 _"1 cms- , 1

= I('i14.6_e,.4/5A_3/[ 0 AA r- 1/41_,3/4 - 1qt 1.8 X ....... 16 '*" I "'10 cm2 s ]

In the above formulae, the radial coordinate is measure,
units of 10 _° cm, the accretion rate is measured in unit
1016 g s-', and the mass of the central star is measure_i i
units of M o. Because of our kinematic approximation !
VR, and rh are the only disk quantities needed to calcu a
the configuration of a magnetic field. Substituting them i,_
equation (6) fully determines the problem. Thus, _t-
problem of magnetic field dragging in the standard dis

parameterized by the magnetic Prandtl number, _, in a,_d
tion to the disk's usual parameters, =,/_/, and M. We fol o
Lubow et al. (1994a) in defining ,_ = q/v, note, howe e
that such a definition is an inverse of what is convention ,1
used.

The externally imposed magnetic field is uniform _r,
aligned vertically. We calculate the steady state configt
ration of the magnetic field as it is distorted and magni ic
by the action of an accretion flow in a standard disk cha_ a,
terized by = = 0.1, /ff_6 = 1, and M_ = 1. Figure 1 sh_x_
the summary of the resultant magnetic field properties. " l
most distinctive feature of the calculated magnetic field c ,_
figuration is its strong dependence on the value of_. Fo
close to its fiducial value of the order of unity, the extet l_
field is only barely distorted. The magnitude of the vert c_
field within a disk remains very close to the value of ib.
externally imposed field. Both radial and transw:_.

(toroidal) components of the magnetic field appear wit._i
the disk, but they are about 2 orders of magnitude smaik
than the vertical component. Overall, the standard actrt
tion disk with fiducial values of its controlling parame, c_
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dotted lines, drawn for visual reference, indicate B = B _. (d) Inclination angle, i, between the field lines and the normal to the disk measured at the disk

surface, as a function of the distance from the star. Dotted and triple-dot-dashed lines are for visual reference indicating i = 0 and i = 30 '_, respectively.

has a negligible effect on the external field. The distortion
suffered by the field lines is too small to permit any centrifu-
gally driven wind to occur. Moreover, this inability to bend
field lines significantly is the prevailing feature of standard
disks with _ _ 1. Changing other controlling parameters
does not produce a qualitatively different result. A disk's
thickness depends only weakly on these parameters (see eq.
[10]), so surface boundary conditions are located at

approximately the same place regardless of the values of _,
M, and M. Governing equation (6) depends only on the

ratio VR/tl, and for a standard disk, where magnetic diffusi-
vity is dominated by turbulence, this ratio is independent of
_, _;t, and M (see eqs. [11] and [12]).

The features of the poloidal magnetic field can be antici-

pated from equation (3) if we neglect radial diffusion and
assume within the disk BR _ B'R(Z/H). Then we have

n_ VR H
(13)

Bz ~ r/

In a standard disk, where r/_ rh, we can use equations (11)

and (12) to estimate that B_/B z _ 1.5(H/RX1/_). The ratio

H/R is roughly about 0.02 and equation (13) reduces to

__ 3x 10 -2B'. _,- (14)
B z

We can also anticipate the features of the toroidal magnetic
field from equation (2) if we neglect the radial diffusion and
advective terms. Under such an approximation equation (2)

reduces to d2B,/d2Z = 1.5BR f_dr/. If we again assume that
within a disk BR _ B'R(Z/H), we can analytically calculate

B,

_ - . (15)
4

The toroidal field achieves its maximum value at height

Z = (I/3)_ 0.6H from the midplane. In a standard disk
r/= rh = ,_v = _'a_ H 2 and equation (15) reduces to

Bf(Z=O.6H)~~ -0.096 (16)
B_ _
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The inclination angle, i, is such that tan i = B_/B z, or using
equation (13), i=arctan (-VRH/rl). In a standard disk
i_ arctan (3 x 10 2/_). Our numerical calculations (see
Fig. 1) are in agreement with the above estimations. For

= 1, B z _ B _', I B_/Bzf _ 2-3 x 10-2, as predicted by
equation (14), and IBc,/B_RI _ 1, as predicted by equation
(16). The inclination angle is very small, as predicted above.

For smaller values of _ the distortion of the uniform

magnetic field becomes noticeable and it may even get to be
quite dramatic. For ,_ = 0.1 the vertical field in the disk is
amplified by about an order magnitude in the inner disk
(less at larger radii). Distortion from an originally vertical

magnetic field configuration is large enough to build up a
significant radial component of magnetic field in a disk,
IBR/Bzl .,_0.1. The radial field, in turn, gives rise to a toroi-
dai field, I B¢,/BzI> 1. However, the inclination angle i is
less than the 30 ° needed to launch a wind. We presuppose
here that the base of the wind coincides with the disk

surface defined earlier as the density scale height. That is
not necessarily so, but in thin disks the inclination angle
calculated at the surface of the disk should be a good
approximation to the value of this angle at the base of the
wind.

We get a wind-launching configuration of the magnetic
field when we assume _ = 0.01. In this case a dramatic
magnification of the magnetic field occurs. The vertical field
in the disk is magnified as much as 10 4 times in the inner-
most part of the disk. The radial field is about as strong as
the vertical field, and the toroidal component of the mag-
netic field dominates the entire field inside the disk,
[B4,/BzI~ 10 2. The inclination angle i_ 60 °, larger than
the critical wind-launching angle, is maintained throughout
the disk. In both cases, ._ = 0.1 and _ = 0.01, the calcu-

lated structure of the magnetic field is very close to what our
rough estimations indicate.

Figure 2 shows the magnetic field lines for the case
= 0.01. From the solution of the time-dependent equa-

tions we can determine that the time necessary for the mag-
netic field to reach this equilibrium configuration is about

55 yr. This is much longer than the dynamical timescale but
comparable to the viscous timescale. For the fiducial value
of _ = 1 the field reaches equilibrium after about 1 yr, and
for the disk characterized by _ = 0.1 after about 10 yr.

The dependence of the magnetic field structure o_
magnetic Prandtl number is reminiscent of the beh_ _1
found by Lubow et al. (1994a). However, there are _._:
important qualitative differences between their and t_
results. As we use a specific model of the accretion disk t
thickness of our disk is not explicitly a free parameter a_, i_
in the Lubow et al. calculations. This is why our n_
control parameter is the magnetic Prandtl number, w h_::c
their only control parameter is _ = _/(H/R) (note that !t
is a constant in their model). The fact that the proble _l
Lubow et al. depends only on one parameter (ours dep_ r_
on _, _, M, and M, but in principle it depends on _ ant t

shape of the disk) is an artifact of their approach. Su 1_
simple parameterization can only be achieved in a ,,
dimensional approximation, using a disk model where : !
and r/are constants, and making some additional comp _
tional approximations. The solutions of the magnetic Jc
dragging problem obtained from two-dimensional c_.ic
lations cannot be, in general, characterized by a si __
parameter. Nevertheless, in the case of a standard ciis

where the shape of the disk is basically fixed, _ becomes
effect the single parameter setting the character of the p_ h
dal field.

Figure la shows that the radial dependence of Bz is ,
characterized by a power-law B z _ R-". The power i_.,
index, x, depends strongly on the value of _. We can. s_
mate that K(_) is itself well described by powers,,.
x _ 0.05_ -°'87. Thus, x is almost inversely proportiom ;
2, translating into very high sensitivity of magnetic 1_c_
radial dependence on the value of_. The results of Lut_o
et ai. also indicate power-law-like radial dependence of/3

However, there are significant departures from a sing
power law, making a direct comparison of our results _r.
theirs difficult. Nevertheless, if we take the portion of tt
disk where a single power law approximates their result v
notice a dependence of the power-law index on
x _ 0.26._ -°'83, or _ _ 0.26(R/H)-°'s3._ -°.8a, very r_ n
niscent of what we have found. The difference betwecn el
results of Lubow et ai. and ours is in the value of the r

malizing factor; it is 0.05 for our results but about 0.01 t_
their results (we assume R/H _ 50 corresponding to il
approximate thickness of our standard disk). This differe k

may be attributed to differences between the models, _

,OOia/'/'/''/'' i' ,o
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FIG. 2.--Plot of field lines of the steady state poloidal magnetic field resulting from dragging an initially uniform vertical field by the flow in a stand
accretion disk characterized by ._ = 0.01 ;(a) global view, (b)close-up of a certain portion of the disk to show the structure of the field inside the disk.
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morelikelytoourinabilitytoapproximatetheLubowetal.
resultsasasinglepowerlaw.In fact,theirFigure1shows
thattheradialdependenceofBz steepens significantly at the

inner portion of the disk.
Our calculations reveal the dominance of the toroidal

component of the magnetic field in the disk. The toroidal
field was ignored by Lubow et al. on the premise that its
magnitude depends on the disk thickness and vanishes in
the limit of a zero thickness disk (see eq. 1-15]). However, if

magnetic diffusivity is dominated by turbulence, i/is pro-
portional to H 2, and although both B_ and B 4, vanish in
H --* 0, the ratio B_/B_ is independent of the disk thickness
(see eq. [16]). In such a disk, the toroidal magnetic field in
fact dominates the radial magnetic field, providing that
_t_ < 0.096. In addition, a significantly distorted poioidal

field (small values of _) must be accompanied by a dominant
toroidal field, inasmuch as in such a configuration

t B_/BzI_ 1 and I B_/BRI is large. Note that although the
poloidal field is almost independent of the value of _, the
magnitude of the toroidal field is inversely proportional to
0{.

4. MAGNETIC FIELD DRAGGING IN VISCOUS

PROTO-PLANETARY DISKS

Astronomical observations of young low-mass stars led
to wide acceptance of the idea that these stars are sur-
rounded by accretion disks (for reviews see Strom &
Edwards 1993; Beckwith 1994), often referred to as proto-

planetary disks because it is expected that they are progeni-
tors of planetary systems much like our solar system. On
the other hand, young stellar objects are capable of produc-
ing highly collimated bipolar outflows (for a review see Ray
& Mundt 1993) often explained as a wind centrifugally
driven from the disk. Thus, young low-mass stars provide

perhaps the most urgent stimulus to study the phenomenon
of centrifugally driven wind from disks, inasmuch as all the
necessary ingredients are most conspicuously present there.

We assume the proto-planetary disk to be a Keplerian,
axisymmetric, geometrically thin, steady state, turbulent
_-disk surrounding a 1 M e star and extending up to 100
AU. For the purpose of our calculations, the opacity law,
needed to determine the structure of a disk, is taken from

Ruden & Pollack (1991), and the specific formulae for the
structure of the steady state disk with this particular choice
of opacity are listed in Stepinski, Reyes-Ruiz, & Vanhala
(1993) and Dubrulle (1993). We adopt ct = 0.01 and /_/=
10 -6 M e yr-L These values yield a disk with a mass of
about 0.25 M e and overall properties corresponding to the
average T Tauri disk.

Tile midplane gas temperature is relatively low in
extended parts of the proto-planetary disk. The low gas
temperature, as well as the high density of gas and dust,
result in very low levels of thermal ionization. Therefore, the
electrical conductivity in large portions of such a disk is

dominated by nonthermal ionization sources of which
Galactic cosmic rays are the most important (the others
being various radioactive isotopes). The midplane regions
of the disk, which interest us most because this is where the
bulk of the disk's mass resides, can only be ionized by

cosmic rays when the surface density is not high enough to
shield them from such ionization. Thus, an interesting

pattern of the degree of ionization emerges in proto-
planetary disks (Stepinski 1992; Stepinski et al. 1993); the
inner, relatively hot part of the disk (in our particular model

& STEPINSKI

up to about 3 AU from the star) is highly ionized due to
thermal ionization; the outer part of the disk (beyond about

10 AU in our particular model) is ionized to some degree by
cosmic rays, but the middle portion of the disk is very
weakly ionized because it is too cool for thermal ionization
and too dense for cosmic-ray ionization. It is crucial to
include both resistive and turbulent magnetic diffusivities

when considering magnetic properties of proto-planetary
disks because both of them are important, albeit in different

radial parts of the disk. We calculate turbulent, rh, and
resistive, r/,, diffusivities (for details see Stepinski et al. 1993)
and use the total diffusivity, t/= rh + r/,, in the governing

equation (6). Physically, this constitutes the key difference
between the case of a proto-planetary viscous disk and the
standard disk considered in the previous section.

Figure 3 shows the properties of the magnetic field
resulting from the gas dragging of initially uniform field in a
proto-planetary viscous disk. The structure of the field
exhibits a strong dependence on the magnitude of the mag-
netic Prandtl number; however, this dependence is most

apparent in the inner part of the disk, where magnetic diffu-
sion is completely controlled by turbulence. In fact, the con-
figuration of the magnetic field in the inner part of the
proto-planetary viscous disk closely resembles the structure
of the magnetic field in the standard disk. Note, however,

that IB_/BRI is about an order of magnitude larger in the
inner part of the proto-planetary disk than it is in the stan-
dard disk. This is because the magnitude of the toroidal

field is inversely proportional to _t, which is an order of
magnitude smaller in the proto-planetary disk. In the outer
part of the disk the relative importance of resistive and
turbulent diffusivity depends on the value of _. For the
fiducial value of g_ = 1, rh > r/,, but both are of the same
order of magnitude. For _ ,_ 1, magnetic diffusion is domi-
nated by resistive losses. This is why the dependence of
magnetic field structure on _, in the outer region of the
disk, diminishes as _ decreases. Overall, the electric con-

ductivity in the outer parts of the viscous proto-planetary
disk is too low to permit significant bending of an external
field, even in the best-case scenario, when turbulence is

completely inefficient in reducing the magnetic field (small
._). In the middle portion of the disk (3 AU < R < 10 AU)
where the degree of ionization is very small, resistive diffu-
sion dominates over turbulent diffusion even if _ = 1. In

this region the flow is not able to drag a magnetic field,
regardless of how small the value of _ is. Note that the

degree of ionization changes sharply from very low to very
high near the inner boundary of the low-ionization region
as the gas becomes hot enough to ionize alkali metals. This
rapid radial change in the magnetic properties of the gas
causes the depletion of the vertical field from the part of the
disk located immediately inward of the low-ionization
region. This is most clearly visible in Figure 3a for _ = 0.01.
The field lines there are advected inward, as they are in a

highly conductive medium; however, this is not balanced by
the concomitant advection of field lines from the neighbor-

ing region as it is ionized too weakly to support any mag-
netic field advection. Figure 4 shows the magnetic field lines
for the case _ = 0.01.

We calculated the time required for the magnetic field to
reach a steady state equilibrium configuration. For _ = 1
an equilibrium state is reached after 5 x 103 yr. The case
with _ = 0.1 takes 6 x 103 yr and the case of _ = 0.01
takes slightly more than 5 x 10 '_ yr to reach a steady state
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configuration. These times are all much shorter than the
estimated lifetime of proto-planetary disks, which is about

106-107 yr.
Altogether, viscous proto-planetary disks are even less

efficient in bending and amplifying an external magnetic
field than standard disks. Even in the case of very small
only the innermost, thermally ionized parts of the disk can
support a field geometry capable of launching a centrifu-
gally driven wind. Providing that small values of the mag-
netic Prandtl number are physically plausible, winds from
the inner parts of the disk may be all we need to explain
some of the observations. However, as the overwhelming
extent of the disk is unable to start a wind, the attractive

idea of wind-driven accretion seems not to be an option.

5. MAGNETIC FIELD DRAGGING IN A

PROTO--PLANETARY DISK DESCRIBED BY A

PHENOMENOLOGICAL MODEL

The basic properties of proto-planetary disks inferred
from observations are the disk's mass, its size, the accretion
rate, and the disk's photospheric temperatures. Radial
dependence of photospheric temperatures are well charac-
terized by the power law T_ff(R),,-R -q. The power-law
index, q, is typically between 0.5 and 0.75. Viscous disk
theory predicts q = 0.75, but most objects are characterized
by a smaller value of q. If we assume that the observed
spectral energy distribution originates from a disk alone
and is not altered by, say, the existence of an additional

spherical dusty envelope (Natta 1993), we have to admit the
possibility that the disk is powered by a mechanism other
than viscous stress. Fitting the power-law radial depen-

dence of photospheric temperatures to observed spectral
energy distributions for solar mass stars (Beckwith et al.
1990) one can obtain

[- R -]-o.s

T¢ff= 390L_-'-_] K. (17)

Now we can take an extra step and assume that T(R)
TcfdR). The disk half-thickness can be estimated from
hydrostatic equilibrium under the thin disk approximation,
H ,_ CJftt ~ R 5/4. Adding a radial distribution of surface
density is sufficient to fully determine the structure of the
disk. Unfortunately, we lack any reliable information about
such a distribution. At this stage we take advantage of the
so-called minimum-mass solar nebula concept (see, e.g.,

Hayashi, Nakazawa, & Nakagawa 1985). Developed for
our solar system, it attempts to reconstruct the surface
density of the progenitor disk on the basis of the present-
day distribution of mass in the solar system. According to
this concept, E-,-R -3/2. Applying this power law to a

proto--planetary disk with a size of 100 AU and a mass of
0.01 M e we get

Y.(R) = 920 g cm 2 . (18)

Equations (17) and (18), together with the assumption
T, tf _ T, permit calculations of H and p, thus also compu-
tation of the degree of ionization. Such a phenomenologicai
disk is cooler than the viscous disk considered in the pre-
vious section; therefore, the inner thermally ionized region

is very small. The surface density drops more rapidly with
distance from the star, allowing efficient ionization by

cosmic rays.

To complete the construction of this model we assume
that the disk is accreting with an accretion rate in the range
of _/= 10-8-10 -6 M e yr- 1 as inferred from observations.
We further assume that M is radially uniform. The know-

ledge of M fixes the radial velocity of the flow

Vn = - 2rtRE " (l 9)

Generally, radial velocities obtained in this model are sig-
nificantly larger (especially at large radii) than radial veloci-
ties in the viscous proto-planetary disk of comparable/_/.

The radial velocity expressed in units of the speed of sound
is I VR/C,I _ 10-2[_//(10 -6 Me Yr-1)](R/AU) • Thus, for
/_/= 10 -6 Me yr -1, IVR/fsl_ 10 -2 at 1 AU and
[ Vg/Cs I "_ 1 at 100 AU. In a viscous disk, considered in the
previous section, I VR/Cs I "_ _(H/R), so it remains very small
throughout the disk. Turbulence is absent from the model,
as its presence is incompatible with the structure of the disk.
The phenomenoiogical model describes a well-ionized,
swiftly accreting disk, which is ideally suited to drag an
external magnetic field.

Figure 5 shows the properties of a magnetic field resulting
from dragging the initially uniform field by the gas in the
proto-planetary disk described by our phenomenological
model. The overall character of the magnetic field is the
same for all values of &/ considered. Consider an accretion

rate of M = 10 -6 M e yr- !. In the outer parts of the disk
(R > 5 AU), where the degree of ionization is high and the
radial velocity is fast, the bending of field lines is dramatic.
It produces a B R that is larger than B z, the poloidal field is
predominantly radial, and the inclination angle, i,
approaches 90 °. The existence of a strong radial component
of the magnetic field leads to the generation of an even
stronger toroidal field, which dominates the entire magnetic
field. In the inner part of the disk (R < 5 AU), where the
degree of ionization is low and the radial velocity slower,

the bending of the magnetic field is inefficient. The relatively
strong vertical field there is the result of magnetic field
advection from the outer part of the disk. However, because
there is no efficient advection within the inner part of the
disk, the radial field is very weak there and the inclination

angle, i, is very small. The toroidal field is insignificant in
the inner part of the disk because of very high magnetic
diffusivity combined with the small thickness of the disk (see
eq. 1-15]). For smaller values of M, the character of the
magnetic field is the same, but the critical radius that
divides the disk into regions of effective and ineffective mag-

netic field bending is located farther from the star. Figure 6
shows the poloidal magnetic field lines in a disk with M =
10- 6 Me yr- 1.

The time for the magnetic field in a phenomenological
model to reach an equilibrium configuration is greater than
that for the viscous proto-planetary disk. This follows from
the fact that, while field advection is slower for the latter, the
distance the field must be dragged in a phenomenological
disk is much greater. The time to equilibrium is about
1.6 x 104 yr for the M = 10 -6 M e yr i model, 1.3 x 10 _
yr for the /f/= 10-7 Me yr-1 model, and 10 6 yr for the
/f/= 10 -8 M e yr- 1 model.

The structure of a magnetic field in such a proto-

planetary disk is markedly different from the structure of a
magnetic field in a viscous proto-planetary disk. Bending
and amplification of an external magnetic field occur quite
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easily. The disk described by a fiducial value of the accre-
tion rate has a wind-launching magnetic field geometry
from R ,_ 4 AU outward. Thus, an overwhelming portion of

the disk may emit centrifugally driven winds. It is tempting
to speculate that our phenomenological disk exemplifies the
kind of disks in which the wind is responsible for the accre-
tion flow; hence, high values of VR, and an accretion flow,

acting on an externally imposed magnetic field, makes the
wind possible. This can only be checked by a self-consistent
calculation. However, given the basic observational proper-
ties of proto-planetary disks, any wind-driven model of a
proto-planetary disk must be characterized by fast accre-
tion speed and low surface density.

6. DISCUSSION

This paper represents an attempt to study the mechanism
of magnetic field dragging in accretion disks in a general
and cohesive fashion. This was achieved, albeit only in the

kinematic approximation and for disks surrounded by a
medium characterized by the magnetohydrodynamical
properties of" vacuum." Our objective was twofold; first we
aimed at investigating the dragging of magnetic field in
viscous disks and, second, we tried to identify a nonviscous
accretion disk likely to produce a nontrivial distortion of an
externally imposed magnetic field.

The case of a viscous disk is interesting inasmuch as such
a disk is, indubitably, the most frequently called-upon
concept in accretion disk theory. The turbulence, which is
the source of the anomalous viscosity and the cause of the

radial movement of the gas that stretches and amplifies the

magnetic field, is also the major destroyer of the magnetic
field by means of turbulent diffusivity. Thus, in order for the
viscous disk to be an effective magnetic field dragger, the
turbulence must somehow perform two seemingly irrecon-
cilable tasks: provide high viscosity and weak magnetic dif-

fusivity. Without knowledge about the source and detailed
character of the turbulence, its ability to deliver on these
two tasks is difficult to assess. Instead, we encapsulate our

ignorance about the nature of turbulence into a parameter,
the magnetic Prandtl number, that, in our context, provides
the measure of the effectiveness of turbulence to destroy the

magnetic field relative to its effectiveness to amplify the
magnetic field. It is often assumed that _ should be of the
order of unity. This is based on two broadly accepted
notions regarding turbulent processes. First, turbulent vis-
cosity and the coefficient of turbulent diffusivity are numeri-
cally about equal (Canuto & Battaglia 1988). Second, the
turbulent, maonetic diffusivity is numerically about equal to
the coefficient of turbulent diffusivity (see Zel'dovich, Ruz-

maikin, & Sokoloff 1983). However, we found that only
disks powered by turbulence characterized by small values
of _ are capable of bending the external magnetic field to
the degree that assures its significant amplification. This
conclusion parallels the results of calculations by Lubow et
al. (1994a). Is the small _ regime possible? It is useful to
recall the meaning of turbulent magnetic diffusivity. The
turbulent motion enhance diffusion by mixing together field

lines of opposite directions, thus reducing the magnitude of
the field and effectively greatly increasing the total magnetic
diffusion. At certain magnitude of magnetic field turbulent
eddies become ineffective in distorting the field lines and

turbulent magnetic diffusion may decrease rapidly, while
turbulent viscosity remains unaffected. Thus, in a nonlinear
regime, small _ condition cannot be ruled out.
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Assuming that _' ,_ 1 disks exist, the structure of the
amplified magnetic field is dominated by its toroidal com-
ponent. The toroidal component is produced by the
Keplerian shear acting on the radial component of the mag-
netic field. If significant dragging of the poloidal field
occurs, the radial component of the magnetic field appears
and is distorted by the powerful shear to produce the strong
toroidal component. The domination of the toroidal field
was not realized by Lubow et al. The magnitude of the
toroidal field is inversely proportional to _t, whereas the

magnitude of the poloidal field, in the first approximation,
is independent of a. In order to assess the importance of
strong toroidal field for the overall structure of magnetic
field we would have to relax several of our assumptions. The
dominant toroidai field controls the nonlinear feedback
effects such as rh quenching described above. Relaxing the

kinematic approximation and considering the self-
generation mechanisms would result in the poloidal field
being affected, and possibly significantly changed by the
toroidal field. Relaxing the vacuum boundary conditions
could lead to toroidai field presence above the disk surface,
further modifying the geometry of the poloidai field. These
issues will be addressed in the future work.

In assessing the dynamical importance of the magnetic
field in a disk, it is convenient to compare its magnitude to
the so-called equipartition value, Beq, given by the balance
of magnetic and gas pressures. If a magnetic field is stronger
than such an equipartition value, it plays an important,
most likely dominant, role in determining the structure of
the disk. Both the ratio of the Maxwell stress to the viscous

stress and the ratio of the wind torque to the viscous torque

are proportional to (B/Bcq) 2. For strong fields, B > Beq, a
kinematic approximation that we adopted in this paper,
fails. For our standard disk the equipartition value is given

by Beq _ 1.3 x 103Rlo 1"3125. The radial dependence of a
magnetic field amplified by the dragging process is a power-
law with the value of the power-law index determined by
the value of _ and the amplitude determined by the magni-
tude of the external field, B% For values of _ _ 1, the field

is dominated by its vertical component, and its radial
dependence is much flatter than the radial dependence of

B_q. Magnetic field decreases with radius much slower than
B,q. In principle, the disk can be divided into two regimes,
the inner disk where B/B_q < 1, and the outer disk where

B/Beq > 1. However, very large values (of the order of 1 G)
of B °o are needed in order for the outer regime to exist. For
small values of _, the field is dominated by its toroidal

component, and its radial dependence is much steeper than
the radial dependence of Beq. The regime in a disk depends
on the value of Boo. If the external field is very small

(Boo < 4 x 10-4G for _ = 0.01 disk)B/Beq < 1 everywhere
in a disk and the magnetic field has no dynamical impor-
tance. If the external field is larger than some critical value,
then disk splits into two parts, the inner part where

B/Beq _ 1 and the outer part where B/Beq '_ 1. In the inner
part, a superequipartition field leads to a nonlinear regime
in which the magnetic field and disk structure are related in
some intricate fashion. In the outer part the magnetic field is

dynamically unimportant. Due to the very steep radial
dependence of the magnetic field, the portion of the disk
with a very strong field is small whereas the portion of the
disk with a weak field is large.

It seems that, although small 3_ disks can provide a field

geometry capable of launching a centrifugal wind, the wind
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would have a negligible effect on the dynamics of the over-
whelming portion of the disk. There are two possibilities to
negate this conclusion. First, if the value of _ is just right,
the radial dependence of the amplified magnetic field could
be close to the radial dependence of B_q and the entire disk
could be in a single B/B_q regime. This would happen for

_ 0.03, for which an inclination angle is just above criti-
cal and the wind can be supported. Second, the existence of
a strong external magnetic field puts a large portion of the
disk in the nonlinear regime, in which the radial dependence
of the magnetic field may be less steep than our kinematic
approximation indicates.

Overall, launching centrifugal winds from a viscous acc-
retion disk is impossible if we assume the fiducial value of

_ !. For _ ,_ t, the wind is possible; however, its rele-
vance for disk dynamics is uncertain and highly dependent
on values of_ and B _'. Finally, turbulent disks are prone to
support the internal generation of a magnetic field such as
the MHD dynamo. We plan to address in the future the

problem of magnetic field dragging occurring concurrently
with the dynamo regeneration process. The resultant mag-
netic field may have properties altogether different from
those calculated in this paper.

The apparent inability of viscous disks to bend the exter-
nal field so that centrifugally driven wind occurs may be
viewed as a disappointment. However, the existence of disks
where accretion itself is caused by the wind remains a possi-
bility. Because the problem of wind-powered disks is inher-
ently nonlinear, its treatment is beyond the scope of this
paper. We may speculate that some proto-planetary disks

are indeed wind-powered. This is because their obser-
vational properties can be most easily reconciled with a
model of a disk that is characterized by large radial veloci-
ties and relatively high-ionization fractions (see § 5), features
necessary to produce large inclination angles of poloidal
field lines. Before embracing such a concept two caveats are
in order. First, observational properties of proto-planetary
disks could be reconciled as well with a viscous disk model,

especially if the disk is surrounded by a thin spherical dusty
envelope that scatters starlight back onto the disk and heats
the outer parts (Natta 1993), thus accounting for the rela-

tively flat radial distribution of disk photospheric t(-r
peratures. Therefore, a swiftly accreting, wind-powered dis _,
is not the only model capable of explaining the ob.,et
vations. Second, and more important, truly self-consist( n
wind-powered model of a proto-planetary disk has _
been yet constructed. The model we have considered in ._
owes its wind-prone magnetic field geometry to an assm_e
distribution of surface density. The fact that the assumpt_
is based on the concept of the minimum-mass solar neb_l
does not make it any more legitimate (in fact see Stepin ._
& Valageas 1995).

Closer examination of the character of the magnetic fi 1
in our phenomenological model of a proto-planetary d_s
shows the steep radial dependence of the vertical magn_ ti
field in the region where field lines are bent by the flow. "I ili
resembles the behavior of a magnetic field in the low _
standard disk. It means that in order for the kinem_ ti

approximation to be valid, the external field must be stud
but then the field in a disk is very weak and its effectiven :s
in driving an accretion flow is doubtful. This undersco:e
the necessity to construct the nonlinear model encompz: _,
ing disk structure, field dragging, and wind launchilt_
Lubow et al. (1994b) attempted to construct a simi_l
example of such a coupled disk model. However, they _i,
not calculate self-consistently the structure of the disk. I_
addition they omitted the toroidal field from considerati _:
Their solution proved to be unstable. Lovelace, Romanc :_
& Newman (1994) constructed a model in which the str _
ture of the disk is calculated, but the dragging of the fiehi i
not self-consistently taken into account, the inclinat_o_

angle is assumed constant and uniform, and radial dep_:r_,
dence of magnetic field is taken to accommodate the s If
similar approach to the wind problem.
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